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Abstract 

Non-invasive estimation of high frequency activation 

regions in atrial fibrillation (AF) may have an important 

role in patient stratification and ablation guidance. This 

work presents a methodology to robustly estimate DF 

maps in ECGI, where the uncertainty associated to the 

estimates is modelled making use of a set of ECGI solutions 

from a range of different lambda parameters (DF-LR) in 

Tikhonov 0-order regularization. 

The proposed DF-LR method was compared to the 

DFs obtained from the standard L-curve (DF-LC) 

optimization. Specifically, the highest dominant frequency 

(HDF) found with both methods was tested in 2 AF 

simulations. In addition, the reproducibility of the DF 

maps was studied in a clinical case using ECGI signals 

from a persistent AF patient. 

DF-LR method overcame the DF-LC in terms of HDF 

sensitivity. Furthermore, the mean absolute difference 

between consecutive DF maps was lower in DF-LR method 

(0.64±0.34Hz vs 1.38±0.11 Hz) showing higher 

reproducibility. 

 

1. Introduction 

There is scientific evidence demonstrating that atrial 

fibrillation (AF) can be originated and maintained by 

localized high activation frequency areas [1]. Additionally, 

it has been observed that the spectral content of the atrial 

electrical activity is well preserved in non-invasive BSPM 

[2]. Some studies have gone a step further and estimated 

dominant activation frequencies (DFs) in inverse 

computed electrograms (icEGMs) with good results when 

compared to other temporal magnitudes [3][4]. These 

results open the possibility of estimating highest DF (HDF) 

areas non-invasively, which could impact on a better AF 

patient stratification and better ablation planning. 

The typical approach followed to estimate DF in 

icEGMs is by localizing the peak of maximum amplitude 

in the spectrum. However, this method does not consider 

possible uncertainty sources affecting the DF estimate, like 

the spatial mixing of the spectral content present when 

solving the inverse problem. In this work we present a 

methodology to robustly estimate DF maps in  

ECGI where the uncertainty associated to the estimates can 

be quantified and used to obtain more reproducible DF 

maps 

 

2. Materials and Methods 

2.1. Data collection and preprocessing 

Two AF episodes of 10s duration were simulated using 

a 3-dimentional realistic geometry of the human atria. 

Specific distributions of electrical remodelling and slow 

conduction areas were included in the models to generate 

and maintain re-entrant propagation patterns. Electrogram 

signals in the epicardium were then computed from the 

simulated transmembrane potentials. Body surface 

potentials (BSPM) were obtained by solving the forward 

problem of electrocardiography with the boundary element 

method. Finally, gaussian noise was added to the resultant 

BSPM with a signal to noise ratio of 20 dB and a 0.5-20 

Hz bandpass filter was applied to improve signal quality. 

In addition to the simulated data, BSPM signals of a 

persistent AF patient (female, 70 years old) were recorded 

before PVI using 128 electrodes. Both torso geometry and 

electrode positions were recorded by photogrammetry. The 

atrial anatomy and fibrosis distribution were obtained from 

a late gadolinium enhancement MRI (LGE-MRI). 

 

2.2. Inverse problem and dominant 

frequency estimation 

We solved the inverse problem by applying 0-order 

Tikhonov regularization. With this procedure, inverse 

computed electrograms (icEGMs) were obtained for 41 

different regularization parameters (λ) in the range [10-12, 

10-2]. Dominant frequency (DF) maps were computed for 

each of these solutions. The DF was considered as the peak 

with maximum amplitude in the spectrum, which was 

calculated using Welch’s periodogram with a Hamming 

window of 4s length and 50% overlap. 

 Pearson correlation coefficients between DF maps 
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from consecutive λ values were computed together with 

the normalized power within the 0.5-12 Hz band for each 

of the 41 sets of spectra calculated. A range of λ values 

with consistently high correlations and power spectral 

ratios was manually selected, and their corresponding 

icEGMs were used to compute the final DF. A probability 

density function was obtained by fitting a gaussian mixture 

model to the DF values computed from the selected 

icEGMs. The final estimation probability was calculated 

using equation (1) in an interval of ±0.2Hz around the DF 

estimate. 

                               𝑝(𝑥) = ∑ 𝛼𝑘 ·  𝑁(𝑥|𝜇𝑘 , 𝜎𝑘)

𝑛

𝑘=1

                     (1) 

 

where αk is the probability of a DF value to belong to a 

particular population of frequencies following a gaussian 

distribution, μk is the mean of each gaussian distribution 

and σk is the standard deviation. The DF associated to each 

atrial location was estimated as the peak with maximum 

amplitude in this probability density function. 

Finally,  the L-curve methodology was applied to 

determine the optimal lambda and rescue its DF map (LC) 

[5]. This map was compared to the final DF estimate 

obtained using the lambda-range (LR) approach explained 

above. 

 

2.3. Evaluation of Dominant Frequency 

Estimation Methods 

In simulations, the gold standard activation frequency 

was determined by counting the activations present in the 

computed transmembrane potentials. To compare the 

performance between the proposed LR method and the 

standard LC in the context of a clinical application, we 

calculated the highest dominant frequency (HDF) regions 

with both methods and compared with the gold standard. 

HDFs were segmented using a custom region growing 

algorithm adapted for 3D data. This algorithm allowed us 

to segment all the different regions with similar DF values. 

The HDF in each map was obtained as the set of regions 

containing any of the frequencies present above the 90-

percentile interval. We quantified the sensitivity and 

specificity of the HDF regions obtained with both methods. 

Temporal reproducibility of the DF maps obtained from 

the patient was quantified by splitting the 30 second ECGI 

signals into 10s windows with 50% overlap. The mean 

absolute difference between DF maps from consecutive 

windows was computed in three scenarios: using CL maps, 

LR maps containing DFs values from all the atria and LR 

maps with only the atrial nodes presenting an estimation 

probability higher than 0.7. 

 

 

3. Results 

3.1. Lambda Range selection 

In the simulated AF episodes we selected the range of 
λ values (10-9 to 5.62·10-5) that maximized the power ratio 

within the 0.5-12 Hz band and the correlation between DF 

maps from consecutive λ values. In this range, the 

correlation with the gold standard activation frequency is 

also maximized. The λ value selected by the L-curve 

optimization method lies withing this same range, and 

close to its lower boundary. In panel B, we can see the 

same analysis applied to the clinical data. In this case, 

maximization of both, the power within the interest 

frequency band and the correlation between DFs from 

consecutive λ values lies within the 3·10-6 to 3·10-4 range, 

a narrower interval than the one obtained for the 

simulations. The lambda value selected by the L-curve 

optimization is again within this range. 

3.2.  DF Evaluation 

 

      

    

 

   

   

   

   

 

                          

                          

      

      

 

   

   

   

   

   

   

   

   

   

 

                         

             
                             

                             

 

 

Figure 1. A) Lambda range selected to compute DF map in 

simulation 2. This range was adjusted to include a high 

power ratio in the frequency band of interest and a 

consistently high correlation between DF maps of 

consecutive lambdas. B) Lambda range selected in a 

patient recording using the same approach. 
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Table 1.  Sensitivity and specificity of the LC and LR 

methods for each of the simulations. 

 

DF maps obtained by LC and LR methods, together 

with the gold standard are depicted in Fig.2. Both methods 

showed similar distributions of the largest DF areas in both 

simulations, but our LR method outperforms the LC 

method. In simulation 1, where the gold standard shows 

two different activation frequencies in each atria, the LC 

method presents a wider penetration of the right atrial 

activation frequency into the left atrium, right below the 

right inferior pulmonary vein. Similarly,  in simulation 2, 

the HDF is incorrectly estimated to appear near the mitral 

valve. More importantly, both simulations show small and 

localized regions of HDFs higher than the gold standard 

HDF: the posterior wall of the right atrium in simulation 1 

and the superior vena cava and the mitral valve in 

simulation 2. The presence of these artifactual HDFs in the 

LC method yield to a poor HDF estimation as compared to 

the LR method (see Table 1). 

 
 Sensitivity Specificity 

Methods OLC LR OLC LR 

Sim. 1 0.010 0.929 0.995 0.782 

Sim. 2 0.000 0.889 0.984 0.920 

 

 

3.3.  DF estimation probability  

In Fig.3, DF estimation probability maps are shown. In 

both simulations, there is a general drop of the probability 

in the boundaries between different DF regions. This 

observation would be consistent with the occurrence of 

mixing of the spectral content in the vicinity of two 

different DF regions.  

Another area with a high uncertainty in both simulations 

is the septum. This is a specially challenging region for the 

inverse problem due to the concavity present in the area, 

which can be a factor leading to also to a higher spatial 

mixing of frequencies. 

Figure 3.  Estimation certainty maps within a ±0.2Hz 

interval around the DF estimated by our LR method. 

 

3.3. DF estimation in patient data  

The estimated DF maps in the patient data are shown in 

Fig.4, where the HDF area was found below the left 

inferior pulmonary vein, which was consistent in all the 5 

windows analyzed. The estimation probability map also 

presents high estimation probabilities in the HDF region. 

This high probability was observed in all the windows, 

suggesting a good temporal reproducibility of the HDF. 

This HDF area also co-localizes with the biggest fibrotic 

Figure 2. A) Posterior and anterior views of the of the OLC, LR and gold standard DF maps. The 3 first columns 

correspond to the first simulation, and the 3 last to the second. B) HDF areas obtained for simulation 1 and 2. 
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patch in the LGE-MRI.  

Temporal stability of DF maps is shown in Fig.4.D. 

Differences between DF estimation in consecutive 

windows was larger in the LC method than in the LR 

method (1.38±0.11 Hz vs. 1.16±0.09 Hz) and goes down 

to 0.64±0.34 Hz if just high confidence regions 

(probability>0.7) are considered.  

 

Figure 4. A and B, DF maps obtained in window 3 with LC 

and LR methods respectively. C, estimation probability 

map provided by the LR method within an interval of 

±0.2Hz. D, mean absolute difference of DF maps in 

consecutive time windows. 

 

4. Discussion and Conclusions 

This study presents a new methodology for DF 

estimation in ECGI which includes an alternative approach 

to find the optimal regularization parameters. Additionally, 

a probabilistic framework that makes use of information 

from a range of ECGI solutions is used to quantify the 

uncertainty of the estimates. This methodology provides 

more reproducible DF maps than the state of the art 

methods. 

Both, in simulations and patient data, the optimal 

lambda value found by the L-curve lied into our proposed 

lambda range, although a narrower lambda range was 

obtained for the patient data. A possible explanation for 

this is the existence of additional uncertainty sources 

which are not present in simulations, like anatomical 

deformations or movements.  

Artifactual HDF areas, corresponding to harmonic 

frequencies of actual DFs appear when using the LC 

method. Although they can be easily identified in computer 

simulations, when coming to patient data we do not have a 

gold standard to rule out these contributions. We have 

shown that our LR method may allow to overcome this 

limitation inherent to DF estimation in AF signals. 

Regarding the limitations of the study, the lambda range 

used for the DF estimation was manually selected by an 

operator. In the future we plan to automatize this step based 

on the spectral parameters found. Additionally, no 

intracavitary information of the AF patient was used to 

confirm the location of the highest DF site. 

Overall, our results suggest that, in addition to the L-

curve, other spectral parameters can be used to regularize 

the inverse problem for DF estimation. Furthermore, the 

optimal solution found with the L-curve may be improved 

when making use of a set of solutions with different λ 

values, providing additional information on the estimation 

uncertainty.        
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